Mtech AI ML


M.TECH IN COMPUTER SCIENCE AND ENGINEERING (SCS)  

Choice Based Credit System (CBCS) and Outcome Based Education (OBE) 

SEMESTER –I

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 

Course Code 

20SCS12, 20SSE254,  

20SAM12, 20SIS31 

CIE Marks 

40 

Teaching Hours/Week (L:P:S) 

3:0:2 

SEE Marks 

60 

Credits 

04 

Exam Hours 

03 

Module-1 :  Introduction, problem Solving: state space search and control strategies 

Module-2: Problem reduction and Game playing, Logic concepts and logic programming

Module-3: Advanced problem-solving paradigm: planning Knowledge representation 

Module-4 :Uncertainty Measure: Probability Theory, Bayesian Belief Networks,  

Machine Learning Paradigms: Machine learning system, supervised and unsupervised learnings,  Inductive, deductive learning, Clustering 

Module-5: Support vector Machine, case-based reasoning and learning.  

ANN: Single Layer, Multilayer. RBF, Design issues in ANN, Recurrent Network

Course outcomes: At the end of the course the student will be able to: 

Define Artificial intelligence and identify problems for AI. Characterize the search techniques to  solve problems and recognize the scope of classical search techniques  

Define knowledge and its role in AI. Demonstrate the use of Logic in solving AI problems  Demonstrate handling of uncertain knowledge and reasoning in probability theory.  Understanding of Learning methods 

Question paper pattern: The SEE question paper will be set for 100 marks and the marks scored will be  proportionately reduced to 60.  

The question paper will have ten full questions carrying equal marks.  

Each full question is for 20 marks.  

There will be two full questions (with a maximum of four sub questions) from each module.  Each full question will have sub question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each  module.

Textbook/ Textbooks

Sl No 

Title of the book 

Name of the  

Author/s 

Publisher Name 

Edition and year 

Artificial Intelligence: 

SarojKaushik 

Cengage Learning 

2014 Edition 

Reference Books

Artificial Intelligence: Structures  and Strategies for Complex  

Problem Solving 

George F Luger 

Pearson Addison  

Wesley 

6th Ed, 2008 

Artificial Intelligence 

E Rich, K Knight,  and S B Nair 

Tata Mc-Graw Hill 

3rd Ed, 2009

Artificial Intelligence: A Modern  Approach 

Stuart Russell and  Peter Norvig 

Prentice Hall 

3rd, 2009 


VTU QP JULY 2021: https://drive.google.com/file/d/1dUrNOsjWoaYyLcjhl5WxXWBQ0a7s6fOd/view?usp=sharing

 Blog: https://lilianweng.github.io/lil-log/



S.No.Roll No.Admn.No.Student NameCourseAI-ML Project Title
1CSEMMTECH/07/202 15584ANGELEN ELIZABITH .MTECH
2CSEM.TECH/02/20215337JAYA DIXIT .MTECH
3CSEMTECHG/02/202 15707PAWAR ARATHI .MTECH
4CSEMTECHM/12/202 15736RAHILA FATIMA .MTECH
5MTECHCSEG/01/202 15701AISHWARYA .MTECH
6MTECHCSEG/03/202 15713HUMERA TAHSEEN .MTECH
7MTECHCSEM/13/202 15729ANCHAL .MTECH
8MTECHCSM/01/20215323VIJAYLAXMI .MTECH
9MTECHCSM/04/20215434SHEELVANT GEETAMTECH
10MTECHCSM/05/20215582SYEDA TUBA MAHVESH .MTECH
11MTECHCSM/11/20215728FARZANA KHANAM .MTECH
12M.TECHSCM/06/20215581SAIMA DANISH .MTECH
13PGCSM/08/2021-225686MAHESHWARI .MTECH
14PGCSM/09/2021-225687BI BI FATOMA .MTECH
15PGCSM/10/2021-225688AZRA FARHEEN .MTECH
Note:
1. All PG Students must participate in above activity
2. Make sure the project not repeated/downloaded from web
3. The presentation of Each project must be done regularly


No comments:

Post a Comment